# **Chapter 4: CAPITAL ASSET PRICING MODEL.**

### Why the CAPM

The CAPM what trues us to explain the properties in the market equilibrium. An equilibrium between the **expected rate of return** and **the required rate of return**.

Basically, this portfolio which is the most representative of the market is composed by all the different stocks in the market weighted in a way which makes them representative of the market. This portfolio is different from an index.

In the end, being that representative, the CAPM draws a **Capital Market Line**.

### **Characteristics (Assumptions)**

- 1. Many investors: There are many of them in the market and none of them can influence heavily in the price of the stocks.
- 2. Single period model: Self-explanatory.
- 3. Investors can lend and borrow whatever money they desire: See topic 3.
- **4. Fixed rate:** So, rates of borrowing and lending are the same.
- **5.** No taxes or transaction costs are considered: So, optimization can be for all the investors in the market, can be global.
- **6.** Rational Behavior: As the Markowitz's model explains.
- 7. Homogeneous expectations for investors: Remember, the CAPM is for everybody.

### **Capital Market Line**

The Capital Market Line expresses the expected return on a portfolio as a function of its total risk. According to the CML, investors allocate their funds between the risk-free asset and the market portfolio in combinations of lending and borrowing. In this model there is no diversification, that is why the **risk premium** needs to be calculated.

### **Formula**

$$E(R_p) = r_f + \frac{E(R_M) - r_f}{\sigma_M} \cdot \sigma_p$$

**Note:** This formula is pretty similar to the one we were seeing in the previous topic.

### **The Security Market Line**

The Security Market Line expresses the required rate of return on stock so that this stock becomes part of M (Market line). In this model the **diversification** is considered.

### **Formula**

$$E(Rj) = rf + E(RM) - rf \cdot \beta j$$

#### **CHAPTER 4: CAPITAL ASSET PRICING MODEL**

#### **BETA**

The Beta is an indicator of the volatility of the security we are analyzing compared to the market. If the beta is **higher than 1** we call it "aggressive" security, if it is **lower than 1** we call it "defensive".

When the beta is aggressive it means that it reacts more intensively than the M to the changes in the market.

#### Resume

| Required return =                                                                                                                                                                                                                                                                                                       | r <sub>f</sub> + risk premium                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CML                                                                                                                                                                                                                                                                                                                     | SML                                                                                                                                                                                                                                        |
| $E(R_p) = r_f + \frac{E(R_M) - r_f}{\sigma_M} \cdot \sigma_p$                                                                                                                                                                                                                                                           | $R_{\text{required }j} = r_f + [E(R_M) - r_f] \cdot \beta_j$                                                                                                                                                                               |
| Required return on a portfolio $p$ that combines $M$ and the $RFA$ efficiently expressed as a function of the portfolio's total risk $\sigma_p$                                                                                                                                                                         | Required return on a security $j$ to be part of $M$ (therefore, in a context of good diversification) expressed as a function of the level of systematic risk or coefficient beta $\beta_j$                                                |
|                                                                                                                                                                                                                                                                                                                         | The SML can also be used to calculate the required return on a portfolio $p$ with any $\beta$ , aggressive or defensive: $R_{\text{required }p} = r_f + [\ E(R_M) - r_f\ ] \cdot \beta_p$ where $\beta_p = \sum_{j=1}^n x_j \cdot \beta_j$ |
| Required return on a stock $j$ when there is no diversification and therefore the risk premium has to be calculated as a function of total risk: $E(R_{j}) = r_{f} + \frac{E(R_{M}) - r_{f}}{\sigma_{M}} \cdot \sigma_{j}$ $R_{\text{req CML}} - R_{\text{req SML}} = \text{additional premium for no diversification}$ |                                                                                                                                                                                                                                            |

## Systematic risk versus specific risk

### Types of risk affecting financial assets

- **Total Risk or volatility of the expected return:** The las variable in the previous formula.
- **Systematic risk:** That risk which cannot be eliminated by diversification.
- **Specific risk:** Which is nonsystematic and can vanish with diversification.

### **Learning from all this.**

- ✓ Total risk² = (Systematic risk)² + (Specific risk)²
- ✓ M: It has no risk as it is perfectly diversified.
- ✓ Coefficient beta of the market: Is 1 as it would represent the market.

### The end

https://youtu.be/O0UsNrW8gp4 - Again